Sweet solution to lithium-sulfur battery charging


Nation has plentiful supply of Monash Energy Institute booster

Sweet solution to lithium-sulfur battery charging
New lithium-sulfur battery technology could store two to five times more energy. The Monash team (L-R): Mahdokht Shaibani, Mainak Majumder, Matthew Hill, Yingyi Huang

 

Glucose is the now-not-so-secret ingredient Monash Energy Institute (MEI) researchers have found to boost battery EV performance.

It's a resource the nation has easy recourse to though the sugar industry.

They say adding it to lithium-sulfur batteries creates a longer-lasting, lighter, more sustainable rival to lithium-ion batteries and are hlding out the possibility of Melbourne to Sydney on one charge.

The Monash team, assisted by the CSIRO, report in a recent edition of Nature Communications that using a glucose-based additive on the positive electrode they have managed to stabilise lithium-sulfur battery technology, long touted as the basis for the next generation of batteries.

"In less than a decade, this technology could lead to vehicles including electric buses and trucks that can travel from Melbourne to Sydney without recharging," lead author Professor Mainak Majumder, from the Department of Mechanical and Aerospace Engineering and associate director of the MEI, said.

"It could also enable innovation in delivery and agricultural drones where light weight is paramount."

In theory, lithium-sulfur batteries could store two to five times more energy than lithium-ion batteries of the same weight, MEI notes.

The problem has been that, in use, the electrodes deteriorated rapidly and the batteries broke down, MEI noted.

There were two reasons for this – the positive sulfur electrode suffered from substantial expansion and contraction weakening it and making it inaccessible to lithium, and the negative lithium electrode became contaminated by sulfur compounds.

Last year, MEI demonstrated they could open the structure of the sulfur electrode to accommodate expansion and make it more accessible to lithium.

By incorporating sugar into the web-like architecture of the electrode the team has stabilised the sulfur, preventing it from moving and blanketing the lithium electrode.

Test-cell prototypes it has constructed have been shown to have a charge-discharge life of at least 1,000 cycles, while still holding far more capacity than equivalent lithium-ion batteries.

"So each charge lasts longer, extending the battery’s life, and manufacturing the batteries doesn’t require exotic, toxic, and expensive materials," first author and PhD student Yingyi Huang said. 


Read our deep dive into battery EV truck ownership, here


Huang and her colleagues were inspired by a 1988 geochemistry report that describes how sugar-based substances resist degradations in geological sediments by forming strong bonds with sulfides.

"While many of the challenges on the cathode side of the battery has been solved by our team, there is still need for further innovation into the protection of the lithium metal anode to enable large-scale uptake of this promising technology – innovations that may be right around the corner," second author and Monash researcher Dr Mahdokht Shaibani said.

The process was developed by the Monash team with significant contribution from Dr Matthew Hill’s research group in CSIRO Manufacturing.

The lithium-sulfur battery research program at Monash University has been supported by the federal government through the Australian Research Council and the Department of Industry, Innovation and Science.

The work has also been supported by Cleanfuture Energy, Australia, an Australian subsidiary of the Enserv Group of Thailand.

Enserv Australia hopes to develop and manufacture the batteries in Australia, the world’s largest producer of lithium.  

"We would be looking to use the technology to enter the growing market for electric vehicles and electronic devices," Enserv Australia MD Mark Gustowski said.

"We plan to make the first lithium-sulfur batteries in Australia using Australian lithium within about five years."

 

Subscribe to our newsletter

Sign up to receive the ATN e-newsletter, digital magazine and other offers we choose to share with you straight to your inbox

You can also follow our updates by joining our LinkedIn group or liking us on Facebook

 

Trucks For Hire | Forklifts For Hire | Cranes For Hire | Generators For Hire | Transportable Buildings For Hire